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This work presents an extremely efficient non-linear transformation based on a certain
Hankel type transform, originally due to A. Sidi. The approach is applied to evaluating
Coulomb integrals in the molecular context. These integrals are bielectronic one-, two-,
three- and four-center terms arising from the interactions of electron distributions over a
Slater type orbital basis. They occur in many millions of terms, even for small molecules,
and require rapid and accurate evaluation. The present work shows how we can reduce the
order of the linear differential equation required to be satisfied by the integrand considerably.
Calculation times as short as 10~2 ms were obtained for four-center terms (the least favorable
case) on an IBM RS6000-340 workstation. This method represents a considerable advance
on previous work on Coulomb integrals.

1. Introduction

In many problems of applied mathematics and physics, one has often to dea
with infinite series and infinite integrals to represent solutions obtained. Very often
in practice these integrals and series have poor convergence: a serious drawback to
their effective use. Therefore non-linear transformation methods for accelerating the
convergence of infinite integrals and series have been studied for many years and
applied to various situations. They form the basis of new methods for solving various
problems otherwise non-tractable and also have many applications [12,13,72]. Their
utility for enhancing and even inducing convergence has been amply demonstrated by
Shanks [58].

Multicenter integrals are the rate limiting step in determining electronic structure
for molecules, which are usualy carried out using the LCAO MO approach [53]. The
integrals contribute to the total energy of the molecule which is required to a precision
sufficient for small fractional changes to be evaluated reliably, e.g., a chemica reaction
in which a minor electronic rearrangement occurs. In practice, the precision threshold
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for the total energy is of order 102 atomic units and, therefore, individual integrals
must be accurate to 107610710 au.

The choice of a basis set for the expansion of atomic orbitals is important in this
approach [16,37]. A good atomic orbital basis should satisfy Kato's conditions for
analytical solutions of the appropriate Schrodinger equation [1,2,36].

A good basis set for molecular orbitals should also satisfy two pragmatic require-
ments:

(D) A simple expansion of the atomic orbitals in terms of the basis functions should
exist and yield a good accuracy.

(2) The molecular multicenter integrals should be computed efficiently.

Currently, the most popular functions used in ab initio calculations are the so-
called Gaussian type orbitals (GTOs) [11,25,57]. This is due to the fact that with
GTOs the numerous molecular integrals can be evaluated rather easily. Unfortunately,
these GTO basis functions fail to satisfy the above mathematical conditions for atomic
eectronic distributions [16,37]. Exponential type orbitals (ETOSs) are better suited than
GTOsto represent electron wave functions near the nucleus and at long range, provided
that multicenter integrals using such functions could be computed efficiently. The
ETOs show the same behavior as exact solutions of atomic and molecular Schrodinger
equations satisfying Kato's conditions [36,51,75].

Among the ETFs, Slater type functions (STFs) [10,26,34,35,48-50,64,70,75] are
certainly the simplest analytical functions, hence they have a dominating position,
but the use of STFs has been prevented by the fact that their multicenter integrals
are extremely difficult to evaluate for polyatomic molecules, particularly bielectronic
terms. Various studies have focussed on the use of B functions that have been pro-
posed by Shavitt [59] and introduced by Filter and Steinborn [20,65]. These functions
can be expressed as linear combinations of STFs [18,79]. Although B functions are
more complicated than STFs, they have properties applicable to multicenter integral
problems [18,20,44,65,78,79]. It is shown that B functions possess a relatively sim-
ple addition theorem [18], extremely compact convolution integrals [19,20], and they
are well adapted to the Fourier transform method originally introduced by Prosser
and Blanchard [47] and Bonham et al. [5,6] and which is one of the most successful
methods for the evaluation of multicenter integrals [8,9,21-24,27-32,66,67,71,76,80].

In previous work, we have shown the efficiency of the non-linear transformations
D due to Levin and Sidi [40], and D due to Sidi [60-63], in evaluating one- and
two-electron multicenter integrals over B functions [54-56]. These transformations
are efficient in the evaluation of infinite oscillatory integrals whose integrands satisfy
linear differential equations with coefficients that have asymptotic expansions in inverse
powers of their arguments.

By applying the Fourier transform method to the one- and two-electron multi-
center integrals using a basis set of B functions, one can obtain analytical expressions
involving semi-infinite oscillatory integrals [22,23,28,71], whose integrands satisfy lin-
ear differential equations of order 4 or 6, respectively, and of the form required to apply
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the D and D transformations [54-56]. The number of calculations depends on the
order of the linear differential equation that the integrands of interest satisfy. The
approximations of S = [ f(¢) dt using these transformations are given by D{™ and

Eém), which, as n becomes large, converge very quickly to the exact value of S
and where m is the order of the differential equation that f(x) satisfies [40,60-63].
These approximations are obtained by solving a set of equations of order nm + 1 or
n(m — 1) + 1, respectively, and where we need to calculate the m successive deriv-
atives of f(x) [40,60,62,63], which presents severe mathematical and computational
difficulties for some complicated functions as we showed in [53-55], for the integrands
involved in the one- and two-€lectron multicenter integrals which satisfy a fourth- or
sixth-order linear differential equations, respectively, especially with large values of
the quantum numbers.

Because millions of integrals are required for molecules of interest, the present
work concentrates on how one can reduce the calculation time for a given high pre-
determined accuracy by reducing the order of the linear differential equations that
the integrands of interest satisfy using some properties of the spherical Bessdl func-
tions and the reduced Bessel functions, involved in the analytical expressions of these
integrands.

In this work, the symbols HD and H D specify that the D and D are used with
the order of the requisite differential equation reduced to two.

2. General definitions and some properties

We define AM) to be the set of infinitely differentiable functions a(z), which have
asymptotic expansions in inverse powers of x as ¢ — +oo of the form

ota) o (a0 %4 ), @
x x

and their derivatives of any order have asymptotic expansions, which can be obtained
by differentiating that in equation (1) formally term by term.
We define the function (v, m) by [74]

m(1/2—=1)n(1/24 V), Frv+m-+1/2)
(vym) = (=1) m T mif(y—m+1/2)’ @

where I stands for the Gamma function [12] and (o), represents the Pochhammer
symbol, which is defined by [74]

(@)o =1,
{mn:am+nm+anxa+n—n:%%@. )
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The surface spherical harmonic Y;™(0, ) is defined explicitely using the Cordon
and Shortley phase convention as follows [15]:

2+ — |m|)!
4re(l + |m|)!

Y0, ) = m+m[ ] Pl‘m‘(cose)eim“’, 4)

where P/"(x) is an associated Legendre function of /th degree and mith order, which
is expressed by means of the well-known Legendre polynomials [12]:

P(e) = (1 47) (%)m/zpl(x) = (1-?) (%)m/z A e

The B functions are defined as follows [20]:

(¢r)!
20t (n + 1)

BIY((F) = E_1/2(Cr)Y™ (05, 07), (6)

where the reduced Bessdl function %n,l/z(oa) is defined as [20,65]

F1/2(Cr) = \ﬁ (e YA ™
ar — . .
= > sy, ®)

where K, _1/, stands for the modified Bessel function of the second kind.
The Fourier transform Bnl(g‘ p) of B(¢T) is given by [18,78]

BINC7) = (2;/2 / & 7B (CF) dF ©
_i l

The analytical form of the Fourier transform of B",((7), equation (10), is ob-
tained by inserting the well-known Rayleigh expansion of the plane wave function in
eguation (9) [43]:

4+oo 1
77 =3 37 a7 7)Y O o)) [V O] (D)

1=0 m=—1
The spherical Bessel function j;(z) satisfies the recurrence formulae given by [4]

{ zfi-1(2) + zjiva(2) = (2 + 1)ji(2),

Uia() — L+ Djisa(e) = @ + D). (12)
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The Fourier integral representation of the Coulomb operator 1/|7 — R1| is given

by [7]
1 1 / efiE.(F—le) .
—=— [ ———dk. 13

- Ry 27 Jg K2 &

The three-center nuclear attraction integrals over B functions are defined as [22,
23,28,71]
1
no,la,my m )\ 1%
T = [ B @)

The two-electron multicenter integrals over B functions are defined as [22,23,28,
71]

B o - )l 4

nalyma,nalgm. m — 5 * T 5m 5 — * 1
T = / [Biniy (G(7 = Ba)) " [B (G (7 — Ra))] =
% Bt [Ga(r = Bo) | B [Ca(7 — Ra)] dra” (15)

3. Thenon-linear D and D transformations

Theorem ([40,60,62,63]). Let f(x) be integrable on [0, oc) and satisfy a linear dif-
ferential equation of order m of the form

F@) = p@)fP@), pre AW, i <k (16)
k=1
Let aso
Jim P@) @) =0, i<k<m, 1<i<m. (17)

If, for every integer [ > —1,
DU =D (—k+Dpro# L pro=_lim =" py(a), (18)
k=1

then the approximation D{™ to S = [ f(¢) dt, using the D transformation, satisfies
the N = 1+ mn equations given by [40,60,62,63]

7, m—1 n—1 7
D — / F@yde+ > fPapas > @ 1=0,12...,mn. (19
0 k=0 r

i=0 !

D™ andthe B, ; fork =0,1,...,m—1,i=0,1,...,n—1, arethe N unknowns.
The z; are chosen to satisfy 0 < 20 < 1 < -+ < Ty, A iMoo 2 = +00. 0f IS
the minimum of k£ + 1 and s, where s is the largest of the integers s for which
lim,_ oo 25 f*)(2) = 0.
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Now, if we choose z; for [ = 0,1,2,...,mn to be the zeros of f(x), then we
can reduce the order of the above set of equations to N = 1+ n(m — 1), which can
be re-written as [60,63]

- m—1 n—1-
ET(Lm) — / f(t)dt + Z f(k)(xl)xlak’ Z &’ik, 1=0,1,2,...,(m—Dn. (20
0 k=1 v

i=0 1l

In most cases, the D and D transformations produce approximations D™ and
ﬁém) which converge very quickly to the exact value of S = f0°° f(t) dt as n becomes
large [40,60,63].

Now, following Sidi [60], we consider the integral f0°° f(t) dt, where

f(@) = g(x)ja(x); (21)

ja(z) stands for the spherica Bessel function of order A (A € N) and g(z) is of the
form

g(x) = h(z) e’ (22)

such that ¢(x) asx — +oo isarea polynomia in x of degree & > 0 for some integer
k and h(z) € A®) for some ~.

If £ > O, then for g(x) to be integrable at infinity lim,_ . ¢(x) = —oc0 is
necessary. If k = 0, then g(z) € AD), hence v < 1 in order for f(z) to be integrable
a infinity.

ja(x) satisfies the differential equation given by [4]

. _ 2x y z? .11
N@) = @) e @), (23)

Using the fact that f(z) = g(x)jx(x), we have jy(x) = f(x)/g(x). Substituting
this in the differential equation above, we obtain

F(@) = pa(@) f'(@) + pa(2) f" (), (24)
where
2 "1 ~ no_ 7x2
i) = 2@ T ) m2w gy T (25)
w(z) w(z)
and
O L[(HE N (HE) N W) |
wie) == Kh(m) ”’) - <h<x) W) } 2””<h<x) ”’>
L2 N2 (26)

If k=0, then p1(z) € ACD and po(z) € AO.
If k> 0, then pi(z) € ACHHD and py(z) € AC2+2),
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In al these cases,
lim p V@) ) =0 fork=4,2 i=12,

T——+00

pro= lim 27%p(z)=0 fork=1,2
r——+00

then, for every integer [ > —1,
2
D=1 (—k+Dpro=0+#1
k=1

The conditions of the applicability of the D and D transformations to accelerate
the convergence of f0+°° f(t) dt can now be shown to be satisfied. The approximation

HD@ of S = [;7 f(t)dt using the D transformation is given by

Xy 1 nil_.
P - [ £+ Y (oain@)Oa >, 1=012, 0. @D
k=0 i=0 1

If we choose z; = ji™! for 1 = 0,1,2,...,n, where 5} is the zero of order I of

the spherical Bessal function j,(x), jg’ is assumed to be 0. The approximation H_,(f)
of S = f0°° f(t)dt using the D transformation is given by

n—1—>5
J— o i
HD;LZ) _ /0 f(t) dt + g(xl)jﬁ\(xl)xfl Z ﬁxZ;l, 1=012,...,n. (28)

i=0 !

4. One- and two-electron multicenter integrals over B functions

By applying the Fourier transform method after subgtituting the integral repre-
sentation of the Coulomb operator, equation (13), and the analytical expression of
B functions, equation (6), into equations (14) and (15) and using the Rayleigh ex-
pansion of the plane wave functions, equation (11), one can obtain expressions for
these integrals, involving very oscillatory semi-infinite integrals which present severe
numerical and computationa difficulties [22,23,28,71]. In previous work [54-56], we
demonstrated the superiority of the D and D transformations in the evaluation of these
semi-infinite integrals compared with alternatives using the Gauss-L aguerre formulae,
the epsilon algorithm of Wynn [81,82] and Levin's u-transform [38,39]. The purpose
of the present work is to reduce the calculation time for a high predetermined accuracy.

4.1. Three-center nuclear attraction integrals

The expression for these integrals is [22,23,28,71]
ny =21+l +n2+b)— (1 +1) —1+1,
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[v(s, x)]z = (1— 5)C2+ 5C3 + s(1 — s)a?,

pi = max(—lj,m; — l; + ;) fori=1,2,

iz = min(lj,m; +1; — 1j) fori=1,2,
v=mnitnp+li+lo—1—j+1/2

M=ll-8)~ (-B)],  Je=|l-0)+ (-1
ft = mp —my — ma+my, ne =11 — 11+ 1 — 15,

N =[(h+1-1)/2),  T=@1-s)R— Ry,

Ir2leme — gAr)2(21; + 1)1 (21, + !

ny,li,my
1+l +n2+ 10>+ 1) 2n1+ls~12nzHp—1
(n1 + 17)! ! 2

i pa2 roo / /
«3° Y ity (llﬂlll\llmllll - 11?7111 —my)
@+ D2 — 1) + !

1'1:0 mllzﬂll
l2 H22
% Z Z il2+lé(*l)lé <l2m2|l/2m,2|l2 — l/2m2 - m/2>
@21+ D[2(1 — ) + 411

1,=0mj=ppz;
13415 ;o
x> (lymbllim|Im'2 = mi) R, "0 05
1=~}
A2
X Z (—i))‘<l2 — lymg — mply — lymy — my|Ap)
A=)

A
1

(A
1) .
% ]z;( ) < j > 2rtnathtl—i+t(ng + np + Iy + 1o — j + 1)

1 ! /
7 _q mo—m,)—(mi—m
% / gnatlitle=ly(q _ gynitlitlo-lyy remmel=lmmmi) gy
S

=0
+oo . 7€\V[R2'Y($, )] . vz) di ds
X /zo T 7[7(5’1’)]”7 ja(vx) dx ds. (29)

Let us consider the two-dimensional integral representation involved in the above
eguation, which will be referred to as Z:

n. K [Ry(s,2)]
[v(s, )™

where iy, i2, m12, ng, v, Ny, A, v and (s, x) are defined according to equation (29).

o1 | oo
F_ / S2(1— )1Y"2 (85, o) / . iz)deds,  (30)
s =0

=0
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Consider the semi-infinite = integral involved in the above equation, which will
be referred to as Z(s):

- +00 P
F(s) = / L Uil CED) I (31)
0 [v(s, 2)]™
+o00 jntl/v ~
— Z / A xnz ku[RZ’V(S;Lx)] j)\(Um) dm, (32)
i [y(s, )™
where jg,v is assumed to be zero and j;"v = jy/v, n = 1,2,..., which are the

successive zeros of jy(vr).
The integrand is of the form

> ku[RZPY(Sn! .CII)] j)\(vx) (33)
v(s, )™

= ga()jr(v), (34)

Fy(x)=2a"

where

ne Fu[R2y(s, )]
Vs, z)™
In [56] we showed that the integrand F,(x) satisfies a fourth-order linear differ-
ential equation satisfying the conditions of applicability of D and D transformations.
The approximations D and D of Z(s) are obtained by solving sets of equations of
order 4n + 1 or 3n + 1, respectively, of the form given by equations (19), (20), where
the first three successive derivatives are required.
Let us consider g,(z). Assuming that

9ga(2) = (35)

2= Ryvy(s,z) = Rz\/(l — 8)C? + 52+ s(1 — s)22,
z~Rp\/s(1—38)x, asx — +oo,

Ey(z) has an asymptotic expansion in inverse powers of z which is given by [74]

+oo
E(2) ~ 20" Y2 (””’2. (36)
mzo (2)

Substituting z by R»+/s(1 — s)x in equation (36) one can easily show that, as
T — +00,

gula) ~ B Y2 ( S5y )Y 2172

+00
—Rov/s(1—s)z (V! m)
X € 37
2. @r e

Vs —s)x)m
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Thus, g,(z) can be written as h(z) €*@), where
{ h(z) e A®), §=n, +v —ny —1/2,
o(x) ~ —Rov/s(1—s)x asz — 4oo.

Using the previous arguments, we can show that F,(x) satisfies a second-order
linear differential equation of the form

Fu(@) = pu(@)Fy(@) + pa(@) ) (2),  pa(), pa(z) € AQ. (39)

All the conditions of the applicability of D transformation are satisfied. The
approximation HD® of [,7*° F,(x) dz can be obtained by solving a set of equations
of the form given by equation (27).

Now, if we choose

o =it =t fori=0,1,2,...,n,

(38)

which are the successive zeros of jy(vz), the approximation Hﬁflz) of § =

0+°° F,(t)dt using D transformation can be obtained by solving a set of equations of
the form given by equation (28).

4.2. Two-electron multicenter integrals

The expression for these integrals is [22,23,28,71]
u:mz—mlz— (ml—mll) + (m4—m'4) — (mg—mg),
[(li=11) = (o= 1) <l < (L—1) + (- 1),
|(ls—15) — (la — 1) | <laa < (I3 —13) + (la — 1),
pai = max (=1, m; — l; +1;) fori=1,234,
p2i = min(lj,m; +1; —1j) fori=1,234,

(s, 2)]° = (1= )¢ + 5C3 + s(1 — 5)a?,
[aalt, 2)]® = (1 = G + 16 + 11— 1)a?,

Mgy = 2(n1 + 11 +n2 4 12) — (l'l—i-l'z) -1+ 1,
Ny = 2n3+ lz+na+1a) — (I3 +13) — 1" +1,
Mg =ln— U+l 1+ 13— s+ 1a— 1
v=|(1-s)Ra — (1 — t)R43 — Ra1l,
vi=ni+ng+li+1l—1—jia+1/2,
vo=ng+na+lz+la—1U—ja+1/2

/ I / Iy
Al = %, Alsy = %,

RZ]:RZ_R_]i i1j:1!213!41
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(n1+ 1l +n2+ 12+ 1)
(n1 + 1) (n2 + 12)!

Jralemanalama _ g(AmS(9]) 4 1)11(2ly + 1)1

nilyma,nzlams

x (—1)at2 (203 + DN (214 + DN

(n3+l3)!(na + la)! 1

I1 112 / /
x Zratlale2ntlet § § ity (lama|limi|ly — lima — my)
3

(207 + DN [2(l — 1) + 1]

11=0m/]=p11

1) H22 ’or / /
e r {loma|loms|lo — I5my — m
% § : § : |l2+lz(_1)lz< - ‘2 2’ 2/ 2|>
(212 + DN2(Ip — lz) + 1N

l' =0 m'2:M21

l3 H32

i (lamg|lgmbllz — l5ms — mj)
jla-+1y \13TM3|03M5[L3 — (3Mn3 3
XZ 2| (2 + 1)11[2(l15 — 1) + ]!

Omg H31

" 24: f a1y (lama|lymiy|la — lymg — my)
(20, + D214 — 1) + 11

l/ 0m4 Ha1
A
l m
X Z <l'2m'2‘l'lm'1‘lm'2 — m'1>R21Yl "0, h,)
1=|1—13|
X Z <l2 — l/zmz — mlzvl — l{l_m]_ — mﬂllzmz — m/2 — (m]_ — m'1)>
l12
1+,
J—
x> (lymip|lam|Um'4 — mig) RigY,™ "™ (05 05,)
v=|i,—1|

X Z <l4 —lymg — mﬂlg — lémg — mé‘l34m4 —my — (m3 — mé)>

269

(n3+1I3+mn4+ 14+ 1) 211 Zno+lp-1
2

l3a
l1o+134
X Z (*i))‘<l12m2 —mh — (ml — m'l) ‘134m4 —my — (m3 — m’3) |)\,u>
A=|l12—1z4]
. AXI% %35 Al Al34 (— 1)z tias
J12 2u1+u2+l+l’+l(yl + 1/2+ l)|(V2 + 1/2+ l')'
J12=0334=0
1 gnotlotli(q _ gymathitle Ll ynatlatls(q _ pynstilstla
< e [ e )
s=0 s'1(1 — s)b t=0 t'3(1 — t)a

" / oo s o[ Roryia(s, )] kuyl Razyaa(t, 7))
2=0 [vi2(s, 0)]" 2 [ryaa(t, )] "3

Ja(vx) dx dt ds. (40)
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Now, consider the three-dimensional integral representation involved in the above
equation, which will be referred to as J:

J = . Slz(l _ S)Zl /_ t”(l _ t)Z3Y>Tn12((9g, )
" /+°° e Ry [Raysa(s, 2)] ko[ Ragyaa(t, 2)]

-0 [vi2(s, )]z [yaa(t, 2)]"7 ga(vz)dzdtds,  (41)

where i1, 12, i3, 14, M12, Nz, A, V1, V2, Nyiny Myass ’ylz(s,m) and 734(t,m) are defined
according to equation (40).

The inner semi-infinite « integral involved in the above equation, which will be
referred to as J (s, t), is defined as

=on [T o [Roayi2(s, 2)] ko[ Ragyaalt, )]
A o Ly e L A L
Bt Rl Royia(s, )] ol Raayaa(t, 2)]
_Zo/ Do, 72 [yaalt, o) 0D 8 (43

The integrand is of the form

e [ Roay12(s, )] kool Ragyaalt, )]
Pl = ol Dattas 00 9
= ge(2)jr(v), (45)
where
() = 2 ko [Ro1vi2(s, )] ko [ Ragvaalt, x)]. (46)

[yaa(s, 2)]™ 12 [yaa(t, 2)]™

Theintegrand F.(x) satisfies asixth-order linear differential equation. We demon-
strated in [62] that the conditions of applicability of the D and D transformations are
satisfied for the evaluation of 7(s,?). The approximations D® and D? of 7 (s,t)
are obtained by solving sets of equations of order 6n + 1 or 5n + 1, respectively, of
the form given by equations (19), (20) where the first five successive derivatives of
the integrand are required.

Now, let us consider the functions g.(x). Assuming that

21 = Rov12(s, @) = Rzl\/(l — 8)(F + sCF + s(L— s)x?,

20 = Razyau(t, x) = R43\/ (11— )G+t +t(L—t)a?

z1~Rnv/s(1—s)x and 2z~ Rg3/t(1—1t)x asx — +oo.
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Substituting z1 by Ro14/s(1— s)z and z2 by Ra3\/t(1 — ) x in the asymptotic
expansions of k,,(z) and k,,(z), respectively, equation (36), one can show that, as
xr — +00,

gela) ~ R 2RGS0 (A )

w ety +2— g —1 o= [Ra1v/s(1—s)+ Razvi(1-1)]x

I +o00
(Vl’ ml) (V21 mZ)
" 77;0 (2R21/5(1 — s) z)™ n;O (2R3t — t) z)™2’ (47)
Thus, g.(x) can be written as h(z) /@), where

{h(m) cA®) §=ny4+1n — Nygy + V2 — Ny, — 1,

d(x) ~ —[Ro1v/s(1 — s) + Razv/t(L — t)]z, asx — +oo.
Using the previous arguments, we can easily show that F,.(x) satisfies a second-

order linear differential equation of the form

Fu(x) = p1(@) F)() + p2(@) F) (z),  pa(), pa(x) € AQ. (49)

All the conditions of the applicability of the D transformation are satisfied. The
approximation HD® of [F*° F.(x)dz can be obtained by solving a set of equations
of the form given by equation (27).

Now, if we choose z; = jlﬂl for . = 0,1,2,...,n, the approximation Hﬁ,(f)
of S = [ F.(t)dt using D transformation can be obtained by solving a set of
equations of the form given by equation (28).

(48)

5. Numerical results

The exact values of integrals Z(s), equation (31), J (s, t), equation (42), Z,20¢.
equation (29), and 7,207 4Y, equation (40), are computed to 20 correct decimals

n

Table 1
Exact values of Z(s), equation (31), obtained using the series expansion equation (32) which
we sum to N;. Errors obtained by using the Gauss-Laguerre quadrature of order 64 [33].
(nz =X\ ny=2v,(a=20and { = 1.0)

s v A Ry R N Exact values Err(GL)
0.005 5/2 0 650 250 203  0.360140912983302D—02  0.37D—05
0.010 72 1 7.00 4.00 86  0.481637530646112D—03  0.20D—08
0.010 9/2 2 650 1.00 475  0.456117321707410D—02  0.11D-01
0010 13/2 3 750 350 134  0.181139626222770D—01  0.20D—02
0010 17/2 4 850 350 168  0.193274110480817D+00  0.91D+00
0.999 5/2 0 750 350 531  0.161198710040904D+00  0.69D—02
0.990 72 1 450 150 224  0.849175425774129D+00  0.34D-01
0.990 9/2 2 9.00 350 253  0.271313806558930D+00  0.30D+01
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Table 2
Errors obtained in the evaluation of Z(s) using the HD.> and D). Time T isin milliseconds.
(nz =X\ ny=2v,(a =20and (2 =1.0)

s v A R R, n Er@ED?) T m EnDY) T
0005 5/2 0 65 25 7 05D-11 004 5 018D-11 0.8
0010 7/2 1 70 40 7 050D-11 004 4 028D-11 011
0010 9/2 2 65 10 9 027D-11 006 6 054D—11 0.30
0010 13/2 3 75 35 7 050D-08 004 5 033D-08 0.19
0010 17/2 4 85 35 8 09D-08 006 6 040D-07 0.30
0999 52 0 75 35 5 05D-09 002 5 070D-09 0.8
0990 7/2 1 45 15 9 074D-09 007 5 021D-09 0.8
0990 9/2 2 90 35 8 08D-09 005 6 074D-09 0.30

Table 3
Errors obtained in the evaluation of Z(s) using the Levin's u-transform of order n (ux(So))
and the ¢ dgorithm of Wynn of order m (¢{9). Time T is in milliseconds. (n. = A,
v=mni1+n2+1/2and n, = 2(n1 +nz) + 1.)

s v A Rt Ry n Emun(So) T m  ErrE®) T
0005 5/ 0 65 25 10 023D-11 052 10 049D-10 047
0010 7/2 1 70 40 10 023D-11 054 10 014D-10 051
0010 9/2 2 65 10 10 083D-09 060 10 014D-08 054
0010 13/2 3 75 35 9 081D-07 058 10 012D-07 061
0010 17/2 4 85 35 8 092D-05 057 10 0.34D-06 0.67
0999 5/2 0 75 35 7 055D-09 036 10 049D-09 047
0990 7/2 1 45 15 10 030D-07 054 10 013D-07 050
0990 9/2 2 90 35 10 056D-07 058 10 031D-07 055

Table 4
Exact values of I:I%%O, equation (29), obtained using the series expansion for the semi-infinite

integral. (R1 = (R1,0,0) and Rz = (R2,0,0).)

n1 n2 Ty Ny A R1 1 R> ¢ Exact values

1 1 5 0 0 600 250 250 150 0.9857079490760592D—01
2 1 7 1 1 450 150 250 100 0.8761720595719183D+00
2 2 9 2 2 900 100 150 050 0.4459612679987873D+00
3 2 11 3 3 350 100 200 100 0.2914294482346616D+01
3 3 13 3 3 850 450 500 300 0.9938451545759142D—06
4 3 15 4 4 400 150 150 100 0.1679864602693796D+01
4 4 17 4 4 250 050 100 1.00 0.1139978397585097D+00

using the series expansions given by equations (32), (43) which are aternating ones
(see tables 1, 4, 7 and 13).

All the finite integrals involved in equations (20), (28), (29), (32), (40), (43) are
evaluated using the Gauss-L egendre quadrature of order 16. The sets of equations (20),
(28) are solved using the LU decomposition.
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Table 5
Errors obtained in the evaluation of I,Z%%O, equation (29), using H 5,(12) and ET(:) for the semi-
infinite integral. Time T is in milliseconds. (n. = A, ny = 2(n1 + n2) + 1, R = (R1,0,0)
and R; = (R2,0,0).)

m me A RL G R G n EM@HDY) T m ErDY) T

1 1 0 60 25 25 15 8 015D-11 087 4 035D—11 165
2 1 1 45 15 25 10 7 09D-11 065 4 014D—11 1.68
2 2 2 90 10 15 05 9 039D-11 110 5 014D—10 2.94
3 2 3 35 10 20 10 8 028D-12 083 4 027D—11 168
3 3 3 85 45 50 30 6 040D—12 048 4 062D—12 166
4 3 4 40 15 15 10 8 030D-12 084 4 079D-11 171
4 4 4 25 05 10 10 5 0520-12 037 3 019D-12 089

Table 6

Errors obtained in the evaluation of f&%%o, equation (29), using the Levin's u-transform of
order n and the ¢ algorithm of order m for the semi-infiniteintegral. Time 7" isin milliseconds.
(ne = A\, ny = 2(n1 +n2) + 1, R1 = (R1,0,0) and Rz = (R2,0,0).)

Ri G R & n Ena(S) T m  EmED) T

60 25 25 15 10 0.83D-11 824 10 051D-11 7.56
45 15 25 10 10 0.10D-10 867 10 0.61D—-10 801
90 10 15 05 10 045D-10 935 10 0.14D-08 872
35 10 20 10 10 0O.75D-11 100 10 0.790—-10 9.32
85 45 50 30 9 0.90D-12 940 10 0.50D-12 965
40 15 15 10 10 054D-11 110 10 O0S51D-11 103

25 05 10 10 7 057D-12 818 8 065D-12 873

A A OWWNDNE
P WWNNPRERE
A BAWWNRELO| >

Table 7
Exact values of J(s,t), equation (42), obtained using the series expansion, equation (43),
which we sum to Ny, (V2 = 1, Ny, =Ny = 201, N = A, (3= G and ¢ = (2.)

S t 1 A Rt R Rz Ry G G Ny Exact values

0999 0999 5/2 25 50 75 60 15 10 182 0.1332888362507D+01
0999 0.005 5/2 15 40 55 65 25 15 211 0.4862207177866D—03
0.005 0.005 7/2 15 20 45 35 20 10 139 0.2241938649088D—02
0.005 0.999 9/2 10 20 60 35 35 20 97 0.4057636102915D—04
0999 0999 9/2 30 35 70 50 25 3.0 234 0.1969258557126D—05
0999 0.005 11/2 55 6.0 85 75 50 10 233 0.1426496442764D—02
0.005 0.005 13/2 50 55 90 50 25 20 120 0.4625584384668D—04
0.005 0.005 17/2 35 40 70 50 30 25 135 0.1598600048270D—03

O WNNPE OO

The calculation time using HD and D transformations computed with an IBM
RS6000 340 is noted (see tables 2, 5, 8, 9 and 14). We aso used the Levin's
u-transform [13,38] and the epsilon agorithm of Wynn [12,13,82] to evaluate the
integrals Z(s), J (s, 1), Z,% g0 and 74074, by accelerating the convergence of the

infinite series given by equations (32), (43). The calculation time is also computed to
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Table 8
Errors obtained in the evaluation of 7 (s, t) using Hﬁf). TimeT isinmilliseconds. (v2 = 11,

Nygp = Nygy = 21, e = A, Cg = Cl and C4 = Cz)

s t m X R Ro Rs Ri G (G n En@HD?) T
0999 0999 5/2 0 25 50 75 60 15 10 8 072D-09 005
0999 0005 5/2 0 15 40 65 55 25 15 4 054D-11 0.02
0005 0005 7/2 1 15 20 45 35 20 10 7 090D-10 004
0005 0999 9/2 2 10 20 60 25 35 20 6 08lD-10 003
0999 0999 9/2 2 30 35 70 50 25 30 6 092D-12 003
0999 0005 11/2 3 55 60 85 75 50 10 8 093D-10 005
0005 0005 13/2 4 50 55 90 50 25 20 7 032D-09 004
0005 0005 17/2 5 35 40 70 50 30 25 8 036D-09 005

Table 9

Errors obtained in the evaluation of 7 (s,t) using

- (©)

D,,~. Time T isin milliseconds. (v2 = 11,
Nygp = Nygy = 21, M =\, G3=CG and (= (2.)

- (6

s t V1 AN Rt R Rs Rsa (G G n Err(D,,") T
0.999 0.999 52 0 25 50 75 60 15 10 5 027D-09 0.70
0.999 0.005 52 0 15 40 65 55 25 15 4 013D-11 0.39
0.005 0.005 7/2 1 15 20 45 35 20 10 3 0.70D-10 0.8
0.005 0.999 9/2 2 10 20 60 25 35 20 3 0.99D-09 0.19
0.999 0.999 9/2 2 30 35 70 50 25 30 5 058D-12 0.71
0999 0005 11/2 3 55 60 85 75 50 10 5 017D-10 0.70
0005 0005 13/2 4 50 55 90 50 25 20 4 09D-09 0.39
0005 0005 17/2 5 35 40 70 50 30 25 5 034D-09 0.71

Table 10

Errors obtained in the evaluation of f (s,t) using u,(So). TimeT isinmilliseconds. (v2 = v1,
Ny = Nygy = 2v1, Ny = A, C3 = Cl and C4 = CZ)

s t 2z AN Ri Rz Rz Ry 1 ¢ n  Err(un(So)) T
0.999 0.999 52 0 25 50 75 60 15 10 10 013D-08 085
0.999 0.005 52 0 15 40 55 65 25 15 6 022D-10 055
0.005 0.005 7/2 1 15 20 45 35 20 10 10 029D-10 091
0.005 0.999 9/2 2 10 20 60 25 35 20 6 097D-09 061
0.999 0.999 9/2 2 30 35 70 50 25 30 8 091D-12 0.80
0999 0005 11/2 3 55 60 85 75 50 10 8 0.16D-07 0.85
0005 0.005 13/2 4 50 55 90 50 25 20 8 0.19D-08 0.88
0005 0.005 17/2 5 35 40 70 50 30 25 8 023D-07 0.99

show the superiority of HD transformation (see tables 3, 6, 10, 11 and 15).

In the analytical expression of Z7200 and 7,204 we let n, and A vary to
compare the efficiency of the transformations in the evaluation of the semi-infinite
integrals whose integrands are very oscillating.

(A Fortran 77 routine has been specialy devised for this purpose.)
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Table 11
Errors obtained in the evaluation of 7(s, ¢) using £9. Time T is in milliseconds. (v2 = v,
Nygp = Nygy = 21, M =\, =G and (= (2.)

s t 17 A Ri R Rz Ri G (& n Err(e{”) T

0.999 0.999 5/2 25 50 75 60 15 10 10 060D-08 0.84
0.999 0.005 5/2 15 40 65 55 25 15 8 018D-10 0.67
0.005 0.005 7/2 15 20 45 35 20 10 10 0.75D—-10 0.88
0.005 0.999 9/2 10 20 60 25 35 20 8 010D-08 0.77
0.999 0.999 9/2 30 35 70 50 25 30 10 0.21Db-12 094
0999 0005 11/2 55 60 85 75 50 10 041D-06 0.81
0005 0005 13/2 50 55 90 50 25 20 0.14D-08 0.87
0.005 0005 17/2 35 40 70 50 30 25 0.27D—-07 0.95

abhwNdDNREFE OO

0o 0 0o

Table 12
Errors obtained in the evaluation of 7 (s, t) using the Gauss-L aguerre quadrature of order 64.
Time T isin milliseconds. (v2 = v1, Ny = Nygy = 201, N = A, (3 = G and G = (2.)

s t V1 A R R> R3 Ra G ¢) Err(GL) T

0.999  0.999 52 0 25 50 75 60 15 10 039D-03 0.30
0.999  0.005 52 0 15 40 55 65 25 15 015D-05 029
0.005 0.005 7/2 1 15 20 45 35 20 10 072D-06 031
0.005 0.999 9/2 2 10 20 60 25 35 20 065D-06 034
0.999  0.999 9/2 2 30 35 70 50 25 30 08D-04 021
0999 0005 11/2 3 55 60 85 75 50 10 044D-01 0.36
0005 0005 13/2 4 50 55 90 50 25 20 0.190-04 0.38
0005 0005 17/2 5 35 40 70 50 30 25 025D-02 042
B Table 13
Exact values of 7,204, equation (40), obtained using the series expansion for the semi-

infinite integral. (ns = n1, N4 = N2, Nyyy = Ny, = 2(N1+n2)+L N =X, G =C(1, G =
and R; = (R;,0,0), i = 1,2,3,4)

nyG M2 Ny A R R2 Rz Ra 1 € Exact values
1 1 5 0 15 35 65 45 30 25 0.1712887759698052D—01
2 1 7 1 30 45 75 50 20 25 0.1096433803364225D+00
2 2 9 2 25 30 55 40 20 15 0.5077289993314898D+01
3 2 11 2 15 25 60 40 10 3.0 0.2249496975806864D+01
3 3 13 3 25 40 60 50 20 35 0.1225528163777227D+00
4 3 15 3 25 45 75 65 35 20 0.2005488272296958D—03
4 4 17 4 25 45 70 60 30 15 0.3653628513846546D—02

6. Concluson

The use of the series expansion given by equations (32), (43) is prohibitively
long for sufficient accuracy, for s and ¢ close to 0 and 1. To obtain 20 exact decimals
for Z(s) for s = 0.01, v = 9/2, n, = A = 2, we need to sum 475 terms of the series
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Table 14
Errors obtained in the evaluation of 7,"3,°"4%°, equation (40), using HD? and DY Time
T isin milliseconds. (ns = n1, ma = N2, Ny = Ny, = 2(n1 +m2) + 1, na = A, (3= (1,

G =Cand R; = (R;,0,0), i = 1,2,3,4)

ni n2 AN Ri Ry Rz Ria G ( n EFF(HB,(LZ)) T n Err(ﬁfs)) T
1 1 0 15 35 65 45 30 25 7 079D-12 9 3 080D-16 45
2 1 1 30 45 75 50 20 25 5 061D-09 5 2 0.70D-09 18
2 2 2 25 30 55 40 20 15 5 021b-10 7 2 0.14D-10 20
3 2 2 15 25 60 40 10 30 7 083dP-11 9 3 030D-12 53
3 3 3 25 40 60 50 20 35 5 043D-11 6 2 013D-11 23
4 3 3 25 45 75 65 35 20 6 037D-13 4 2 041D-12 17
4 4 4 25 45 70 60 30 15 6 021D-14 8 2 018D-13 17

Table 15

Errors obtained in the evaluation of jggg?;gggo equation (40), using u,(So) and £9. Time

T isin milliseconds. (ns = n1, ma = N2, Ny = Ny, = 2(n1 +m2) + 1, na = A, (3= (1,
Ca=Cand R; = (Ri,0,0), i =1,2,3,4)

ni n2 A Ri R Rs Ra (1 ¢ n Emm(un(So) T m Err(sE?L)) T

1 1 0 15 35 65 45 30 25 6 0200-10 156 8 0.23D-10 171
2 1 1 30 45 75 50 20 25 5 072Db-08 131 6 078D-08 143
2 2 2 25 30 55 40 20 15 6 026D-09 165 8 0.18D—-09 202
3 2 2 15 25 60 40 10 30 9 042D-10 257 0O 054D-10 249
3 3 3 25 40 60 50 20 35 7 013Db—-11 206 8 036D—11 213
4 3 3 25 45 75 65 35 20 7 028D-12 219 8 041D-12 232
4 4 4 25 45 70 60 30 15 6 057D-12 195 8 0.14D-12 241

and for s = 0.99, v = 5/2, n, = A = 0, we need to sum 531 terms of the series,
equation (32) (see table 1).

From the values reported in tables 1 and 12, note that use of the Gauss-Laguerre
quadrature even to high order (for instance, 64) gives inaccurate results, especially
for s and ¢t close to 0 or 1 (see s = 0.005, 0.01 and 0.99 in table 1, s = 0.999,
t = 0999 and s = 0.999, ¢ = 0.005 in table 12). If we let s, = 0 or 1, the
integrands F,(x), equation (33), and F.(x), equation (45), will be reduced to the term
"™ jy\(vx), because the terms E,[R'y(a,x)] /[v(a, )]™ for a = s,t become constants
and, hence, the asymptotic behaviour of the integrands F,(x) and F.(x) cannot be
represented by functions of the form e=%* f(x), where f(x) is not arapidly oscillating
function. We aso note that the regions closeto s =t =0and s =t = 1 carry a
very small weight because of their expressions s%2(1 — s)?2, ti4(1— t)™3, equations (30),
(41) [27-32,66,41].

Using the epsilon algorithm and Levin's u-transform, we accelerate the conver-
gence of the infinite oscillating series but the accuracy is still insufficient compared
with the accuracy of the HD transformations (see tables 3, 6, 10, 11 and 15).

The D and D transformations are efficient in the evaluation of the integrals of
interest, but their applications required the calculation of the first three successive deriv-
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atives of the integrands for the three-center nuclear attraction integrals, equation (20),
and the first five successive derivatives for the two-electron four-center Coulomb in-
tegrals, equation (20), entailing severe numerical and computational difficulties. Ob-
taining the approximations Ef) of 7 (s) and ﬁ,(f’) of J (s,t) involves solving sets of
equations of order 3n+1 and 5n + 1, respectively, equation (20), which converge very
quickly to the exact values of Z(s) and (s, t) for large values of n.

Using the HD and H D transformations we reduce the order of the linear differ-
ential equations satisfied by the integrands of Z(s) and 7 (s, t) from 4 and 6 to 2, thus
the prablem of computing the successive derivatives of these functions is avoided. We
just need the first derivative of the spherical Bessel function j,, which is very easy to
compute (see equations (12)). The approximations HD > of Z(s) and J (s, t) are ob-
tained by solving sets of equations of order n+ 1 instead of 3n + 1 for the three-center
nuclear attraction integrals and 5n + 1 for two-electron four-center Coulomb integrals
by using D and D transformations.

From the results listed in tables 2, 5, 8, 9 and 14, note the superiority of HD
over all other aternatives. To obtain 11 exact decimals using an RS6000-340 IBM
workstation, for Z(s) for s = 0.01, v = 9/2, n, = A = 2 we need 0.06 ms by
using HD, but by using D transformation we need 0.30 ms, and for s = 0.999,
v =5/2, n, = XA = 0 we obtain 9 exact decimals for Z(s) in 0.02 ms by using HD
and 0.18 ms by using D (see table 2). To obtain 11 exact decimals for f(s,t) for
s = 0999, ¢t = 0.005 v1 = v, =5/2, n, = A = 0 we need 0.02 ms by using
HD and 0.39 ms by using D, and for s = 0.999, ¢t = 0.999, 11 = v, = 9/2,
ne = A = 2 we obtain 12 exact decimals in 0.03 ms by using HD and 0.71 ms by
using D. For the evaluation of Z)'00, equation (29), and 74040, equation (40),
we used the epsilon agorithm, Levin's u-transform, the D and HD transformation,
to compare the calculation times for the same accuracy. For Iy’jf"g’g for ng =no =1,

ne = A = 0 we obtain 11 exact decimals in 0.87 ms by using HD, 1.66 ms by
using D, 8.24 ms by using Levin's u-transform and 7.56 ms by using the epsilon
algorithm, and for ny = np = 3, n, = A = 3 we obtain 12 exact decimals in
0.48 ms by using HD, 1.66 ms by using D, 9.40 ms by using Levin's u-transform
and 9.56 ms by using the epsilon algorithm (see tables 5 and 6). For 7304 and
forni =np =n3=mn4 =1, n, = A =0, we obtain 12 exact decimals in 10 ms
by using HD, 43 ms by using D, 150 ms by using Levin's u-transform and more
than 177 ms by using the epsilon algorithm, for ny = np =ng=ng=n, =X =3
we obtain 11 exact decimals in 5 ms by using HD, 24 ms by using D, 198 ms by
using Levin's u-transform and 219 ms by using the epsilon algorithm (see tables 14
and 15).

These examples show that integrals which contribute to total molecular energies
can be obtained to a precision of 10~1° atomic units, which is quite sufficient for
energies of chemical processes.

The present work illustrates the substantial optimisation regarding calculation
time obtained using the H D transformation over D and D transformations and its
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much greater rapidity than Levin's u-transform, the ¢ agorithm of Wynn and series
methods.

Obviously, this greatly increased rapidity of the HD transformation is a key
issue. In the molecular context, many millions of such integrals are required for close
range terms (long-range terms being treated by asymptotic expansions or multipole
approaches), therefore rapidity is the primordia criterion when the precision has been
reached.

The H D transformation methods are also able to reach precisions of 10~18 atomic
units reliably for the first time and, certainly, some applications of this extremely high
accuracy will be developed in future work.
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